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1. Introduction

1.1.  The basics oheurology

The human brain isemtral part of the human nervoagstem. It is also the center of the
control of the peripheral nervous system. Its function is to control the low level of
unconsciousnesactivity such as the hart beet, breath rhythm andratteeabolic functions, and
to control higher level aware activity such as thought, reasoabsgractiongtc. Consciousness
is a mutual interaction ofnany systems in the brainFinal and detailed description of

consciousnedsasedn thebiologicalground has not been given jet.

Neurophysiology is medical science which exploring the activity of the healthy brain. There
are several methods to explore the activity of the human brain. These methods belong to the
scientific discipline called Neuroimaging. kheds are divided in two categories. One of them
tries to give a structuraldescription whilethe other one gives a functional description of the
human brain. Functional description is very important not only in case of diagnosis of the
metabolicdiseasewound, lesion, but also in exploring of the cognitive functions of the human
brain. Since the information processing processes are followed by increased metabolism of
specific region of the brain, functional description makes it possible to directlylizésuthe

activity of different brain center.

1.2. Methods of reading neural signals

Computer tomographyCT) is a method used for quick examination of the brain. Computer
algorithms processing the amount efays absorbed in the relatively small volume a train,

and visualize the results as cross section of the brain.



Introduction

The method ofmagnetic resonance tomograptMRT ) uses magnetic fields and radio waves
to make a two or three dimensional image of the structure of the brain. The main advantage of
this method that it dos not use any radioactive tracers to imaging. Because of the sophisticated
mechanism of signal detection, the MRI is capable of depth and surface imaging with a high level
of resolution, and tracking the temporal changes of the strudttite brain.

Functional MRI(fMRI ) is based on the feature of the hemoglobin. It imaging the changes in
the bloodstream in the brain caused by the neural activity. This method is capable of visualizing
in which way and which structure of the brain wasvatéd during solving some specific task.
Since the method is very sensible of bloodstream changes, fMRI is used in the early diagnosis of

the stroke.

Positron emission tomograpiPET) uses radioactive tracers injected in the bloodstream to
show the structure of the brain. The absorbed radioactive tracers in the different brain region are
detected to get a two or three dimensional picture. Because of theetashmbsition of the

radioactive tracers PET allows only a short time examination of the brain.

ElectroencephalographyEEG) is a method which turns the brain activity into electrical
signals. By placing electrodes on the skull it is possible to demdtective activities of neurons
in the near area of the electrodes. The main disadvantage of the method is its poor spatial

resolution.

Electrocorticography(ECoG) is an invasive measuring method. It uses electrodes implanted
by chirurgical procedureirgkctly into or near the neural cell of the cerebral cortex. There are
depth and surface electrodes. The depth electrode could measure the neural activity of dipper

structure of the brain.

1.3.  The neuron, the membrane potencial and the action

potencial

The rde of the nervous system of humans and animals is to harmonize and adjust organism to
the outer environment depending on the stimulation coming from it. The nervous system of the

vertebrates makes

9 the central nervus system; it makes the brain and thal smrd,
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Peripheral Nervous System

Ganglion

Nerve

the peripheral nervous system; it composes the nerves and ganglia.
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Figure 1 The diagram of the nervus systemError! Reference source not found.

The components of typical neuronare

T

the body orsomaof the neuron; it contains theucleuswhich takes place the

biggest part of the protein synthesis

thedendritesor the tree of the neuron which provides with its many branches-a one
way supply of the stimuli to the body of the cell,

theaxon it supplies the transfer of the neural impulses from the body of the cell to
other neurons,

the axon terminal it contains synapses which excretes neurotransmitters doing

communication with other neuron or neurons.

Dendrite
Axon Terminal

Mode of

Rarnwvier
Cell body

Schwann cell

Myelin sheath
Mucleus

Figure 2 The typical neuron,[2]
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There are many aspects which could be used for neuron classification. The two most
important are based on

M the effect or influence on other neurons:

0 jXxcitatory neuronsthey excite the targeted neurpns

0 inhibitory neuronsthey suppress the neural impulses

0 modulatory neurons
1 the way of spiking:
0 tonic or regular spiking
0 phasic or bursting,
o fast spiking
o thin-spike
Neurons communicateby neural impuses The neural impulse is a change of the
membrangotentialof the neuronwhich causedy the stimulation of theneuron In theresting
state the membranepotentialis called resting potential Stimulatingthe neuronthe resting

potential rapidly changs During this processa specific ion channelsopen and the

concentration of the positive and negative charges change inside and outside of the cell. This
phenomenoiscalledOct i on .potenti al

Action

potential
+40

Voltage (mV)

f
S
fy
o
N
=
g
@
(]

uomzugpda\d

Threshold ~ Failed
-55 initiations

70 = Resting state

Stimuilus T Refractory
period

0 1 2 3 4 5
Time {ms)

Figure 3 The action potential,[3]
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The parameters of the action potential are
the time of thestimulus
theresting potential

therising phase

the peek

1

1

1

1 thefalling phase
1

1 theovershootind theundershoat
1

thethresholdevel

The neuronsggenerateneuralimpulseson all or nothingbasis The stimulusof the cell needs
to be large enoughto force the membrane potential above the threshold level. When it happens
the actionpotential appears. It has been observed that in the central nervous system the peek of
the action potential is always the same and it does not change with the strength of the stimulus,
but the frequency of the appearance of the action potential doesn Axitential or neural

impulse occurs at the beginning of the axon, and it carries it to the targeted neurons.

1.4. Measuring electrical impulses of neurons

Electrophysiology as science deals with methods which could measure the changes of the
membrane potentiadf the neural cells especially action potential. The electrical activity of the
neural cell could be measured in its natural environnii@nvivo) or in laboratory controlled
condition(in vitro). Both methods imply invasive surgical operatido measuréghe membrane
potential very fine micropipettes is used. They are placed into théntedl cellular) or near the
cell (extracellula). Today b6s application uses micropipettes
solution with ion composition which is iesimilar to the composition of the interior of the cell.
Appropriate conductor placed in the solution of the micropipette provides a closed electrical

circuitry between the interior of the cell and the signal processing circuitry.
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Voltageclamp

The advantage of the method is that it allows to the experimenter the possibility to hold the
membrane potential on predetermined level. Considering that most ion channels of the cell
membrane works as a voltage controlled gateway, it is possible to measige thurrent trough
the cell membrane for given membrane potential. These channels pass ion currents only if the
membrane potential reaches specific level. The apparatus essentially makes a current source with
electrodes. The membrane voltage is meastmadjh voltage electrodes and it applied to the
amplifier. The amplified membrane voltage has been compared with a determined membrane
potential level. By the negative feedback the error signal drives the current into the cell trying to
reduce the error teero. Recording the sign and the intensity of the feedback current it is possible

to determine the ion current trough the membrane of the tested cell.

Membrane

potential ;
Irtracellular amplifier Signal generator
electrode

Extracellular
electrode

Axon
(e

Feedbhack
amplifier

Figure 4 The voltage clamp method[4]
Currentclampmethod

With this method it is possible to track and record the changes of the membrane potential
caused by the cell him self or by stimuli. It is a good method to test the influence of the ion
current trough the membrane on the generation of nleenbrane potential. This method
commonly used to examine and understand the influence of neurotransmitters on the opening and
permeability of the ion channels of the membrane. The instrumentation is the same as in the

voltage clamp method. The differensdhat the control is made trough the current electrode.
Patchclampmethod

Micropipette with a relatively large opening is placed as near as possible to the tested cell.
With gentile sanction a small part of the membrane surface is drown into the opktiiagatch

pipette. The main advantage of the method is that allows direct examination of the activity of a

6
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specific ion channel. If the sanction force is strong enough to remove a small part of the
membrane surface, than it is possible to monitor thigity inside of he cell. The disadvantage of

the removing process is that the solution of the pipette is mixed with the ion composition of the
interior of the cell causing dilution of the essential ingredients in the cell. This could change the
conditionof the action potential generation process and lead to the measurement error. There are

many variation of this method.

On cell Inside-out

V
=
V

QJ
=
| |

Wh(gc?ell Outside-out
Figure 5 The patch clamp method[5]

New methods

The disadvantages of threforementioned classical methods are that they measure neural
activity only one cell. Significant problems occur due to artifacts caused by the subject
movement. Parallel measurement of the neural activity of more than one cell requires more
implanted micopipettes which lead to significant tissue damage and complicated surgical
intervention. The precise technological procedures, knew signal processing methods and cluster
algorithms create the possibility of parallel measurement of electrical activitg oftérior or the
exterior of multiple cells. The structure of the neural network shows uneven spatial distribution of
the neural cells in the brain. They are dividedayers of different depths. With these knew
methods is possible to measure neuralagtof different layers. Figure 6 shows the shape of a
glass micropipette with eight different measuring positions. Every position measures electrical
activity of the environment over eight parallel measuring chanmfkis.configuration givesixty

four parallel recorded signals.
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Figure 6 The micropipette with eight measuring position, [6]




2. The state of the art

2.1. The basic deterministic model of the neural cell

Integrateandfire neuron model

Lapicuque was the first who managed to model the neural cell membrane
characteristics using parallel connected resistor and capacity. This simplified electrical
circuit could mimic the action potential if the membrane capacitor is charged to some
initial potertial. When the level of threshold potential is reached the action potential
generated, the capacitor discharged resetting the membrane potaiedueusedhis
model to compute the firing frequency of a nerve fiber resistively coupledto a

stimulatingelectrodeneldat fixed voltage.

These types of neuron models do not describe the exact form of the action potential.
The action potential is taken as an event which appears in some epoch. The iateyrate

fire model describes the neuron dynamics by tam@onents:
1 an equation to describe the form of action potential,
1 a mechanism to generate spikes.
In the class of integrat@ndfire models the followinglements are used
1 alinear differential equation to describe fioem of the membrane potential,

1 athreshold for spike firing.
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This model iscalled he @l e adandf i n é é.dtmbad electrical circuit consist a

capacitor C and a resistorRdriven by an input current (t), Figure . The voltage on the
capacitor is given by the equation

RC&% ) v, RI() EQ 21

This equation is a linear differential equation. It represents a leaky integraR{-or
circuit with parallel connected resor R and capacitdC . From the point of view of the

neuroscientist it izalled the equation of a passive membrdhéhe initial condition is

V(t,) = Ve + \Ethe solution of the equation is

V(t)_ Viest = De®, t b EQ 22
A B C
v action 0
| @ potentiall s
2 -
C— ¢R > 40p
>
threshold I £ -60
Q -
L €
= Veest ( =
10 ms reset 0 100 200 300 400 500
t (ms)

Figure 7 The leake integrate and fire model of the neuron

The benefit of this model lieg the separation dime scales betweehe extremely
rapid actionpotentialand slower processthat affectsynapticintegration,bursting,and
adaptationlt hasbeenusedin the studies ranging fromnalyzingsynaptic integration by

single neuronsto simulations of networks containing relatively complex connected

10
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neurons.This model found to besefil in understandinghe propertieof large neural

networksandthe implications ofargenumbersof synapticconnections.

However, he leaky integratandfire model isnot capable to explaimarny aspects of

neuronal dynamics:
- the inputis integrated hearly, independently of the state of gustsynaptic neuron,

- after the action potential was generated the membrane potential is reset and the
spikes before has been forgotten, no memory present and adaptation proespskifast
and bursting processe&an not be captured,

- nonlinear interactions between different presynaptic spikes are neglected.

Hodgkin-Huxley model of neuron

As it has been described earlier, the action potential is a result of the difference of the
potential of the interior and &xior of the cell. This difference is caused by the flow of
charged ions trough the ion channel of the cell membrane. Analyzing the giant axon of
the squad, Hodgkin and Huxley succeeded to medisase currents amdescribed their
dynamics in terms of fferential equationsOriginally, the HodgkiinHuxley model
describes only three types of ion chanrektan be extended to include many other ion

channel typesThe cell membrane separates the interior of the cell from the extracellular
liquid and actsasa capacitor. If an input currem(t) is injected into the cell, it may add
further charge othe capacitor, or leak through the channels in the cell membrane. Each
channel type is representéy a variable resistor. The unspecifichannel has a leak

resistanc&®, the sodiumchannel a resistancéR, and the potassium channel a
resistanc&, . The value of the resistance changes depending on whether the ionl channe

is open or closed. Becausetbé flow of theions through the cell membrane, teas a
differention concentratioretween thensideandthe outside of thecell. This difference
of ion concentration generatdsetNernst potentiaEvery specific diffeence of ion type

is presented as separate batteryThere are voltage souréer sodium, potassium, and

11
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the unspecific thirdchannel,labeled ag&,,, E., and E_ respectively.The egation

which describes the membrane potential is

Céj\'(“;—t(t) £(t) g}lk(t)

where the sung 1, (t) is the sum of all currents trough the membrane ion channels. To
k

model the open and closed uncertainty of the ion channels, HodgkinHaxley

introduced additional variabta, n andh. The combined action ofn and h controls
the N, chamnels while the K™ gates are controlled Iy Hodgkin and Huxley

formulated the three ion currerdn the righthand sideas

al=oumh(v-B.) &r(v &) atv B

The three gating variables, n and h changeaccording to differential equations of the
form
dm(9 _ m (9 doy _n-g( p _dht _h-f)
dt t.(u) 7 dt H(u 7 dt Nl

The number of ion channeis finite, and the specifion channelsopen and close

stochatically. The im current over the patch of membrane for every repeated experiment
is never the same. The Hodgkituxley equationslescribe the opening and closing of
ion channelswith deterministic equations correspond to the current detigibpigh @
extremely large pgah of membrane containing an infinite numbsar channels or,
alternatively, to the current through a small patch of membrane but averagechany
repetitions 6 the same experimenio model he stochasticharacteristicappropriate

noisecould be addetb the model.

The Hodgkifi Huxley model describes the generation of action potentials on the level
of ion channelslt could be used to analyze sophisticated biophysical neuron moidiels w
more than three types ofion currents Electrophysiologists have edcribed an
overwhelming richness dfifferent ion channels andié¢ set of ion channels is different

12
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from one neuron to the nexthe precise channel configuration in each individual neuron

determines a good deal of dserall electrical properties.

Someof the disadvantages dfe Hodgkiri Huxley modelare:

- adding new ion currents to model a specific membrane naakes the
universality of the lddgkinHuxley equationsjuestionable,

- Hodgkin-Huxley equation is not derived based on the microscopic bahafvio
the opening and closing of ion channels,

- the analysis 6 collective phenomena in neuronal networdfen rely on much

simpler and more tractablaodels of the single neuron than that usedHboggkin and

Huxley.
Extracellular
A
INa+l Ik, T le. I | cax I
4+ | 44+
Vm Ina+ Ok+ Jo- 9ieak —7— Cnm

+ EC!- ELeak

O
Intracellular

Na+

Figure 8 Hodgkini Huxley model of the neuron

Dendrites and synapses.

The Hodgkin Huxley model disregards té spatial structureof the neuronand

reducest to a pointlike spike generator. Howevethe spatiaktructureof a neuron could

13
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potentially be important fosignal processing in the brailhe electrical properties of
neurons have been described as a capacitor tbhaiged by synaptic currents and other
ion currents across the membraAenon-uniform distribution of the membrane potential
on the dendritictree and the somaduces additionalongitudinal current along the
dendrite.To describe these phenometable equatioras been derived. This model of
neuron is known as the cable theory modetlekcribe the membrane potential along a

dendrite as a fuction of timeand space.

Figure 9 cable theory model of the neuron

The compartment model

The cable theory model supposes that the dendritic tree is at most locally equivalent
with a uniform cable. The different kind of diaraetand electrical property along of the
dendrite makes the solution of the cable equation not so easy. Discretization of the
dendritic tree by dividing it in smaller element makes the solution of the cable equation

easier. This model is known as the conipa@nt model of the neuron.

14
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Figure 10 The compartment model of the neuron

2.2.  Thebasicstatistical assumption of neural activity

The detailed analysis of the action potential generation process shows that the
appearance of the aatiopotential is irregular. This is also true for the laboratory

conditions. The nature and the causing effect of this phenomenon is still a subject of

many research wor ks. T hneurathaisis the neurtassyssemc h as i
and what is itsale inthe syste®d, fiCan t he neur al noi se cause
in the appear anc e are tll shduld beraeswared. | i mpul ses?o0

As possible source of this neural noise two sources are usually mentioned. One of
them is thermal noise&hich could be explained and analyzed by Hodghkuxley model.
The second one explains the source of the noise as a variable number of membrane
channet dedicated to specific iong8]. However, theoretical researches on tledfiof
neural systems modeling, where the neural connections made randomly, show that the
irregularity in the timing of the neural impulses is not conditioned to the neural noise.
The irregularity is the feature of the system as a whole and not of therglenelements

of the system[9].

To explain and interpret the irregularity of the spike timings usually states two not so
different kind of interpretation. These are also used to try to explain the information

coding pocess in the brair10].
15



The state of the art

In the work of Adrian et. al. sensory neural cell were examiddd. They found that
the strength of the stimulus is coded by the variable flow of the spikes andethdar
timing is due to neural noise. This type of information coding and irregularity is called
rate coding The rate of the neural impulses is determined by the number of generated
impulses in a unit time interval. This parameter is the crucial datuimeimformation
coding process. However, irregularity caused by the noise limits the amount of
information proceeded by sensory neurons. In stabile physiology characteristics, the
estimation of the rate parameter is possible even in the relatively leivaeroise. But,
high level of noise causes significant changes in the impulse timings and the accuracy of

the estinated rate parameter decreases.

It is interesting to ask, whether the rate of the generated neural impulses in unit time
is the only paramet which describes the information coding processes in sensory and
motor event? The search for the answer created the second interpretation of information
coding known agemporal coding [11]. By this interpretation, if the ming of neural
impulses presents important factor in information coding process, than the irregular
feature of these events is the crucial part of the signal sequences. In this case, the noise
accompanied by the signal in form of irregular timing could l&ggnthe sensibility to the

relatively small signals. This type of phenomenon is knowstashastiaesonance[13].

Regardless of the interpretation accepted, irregular feature of the neural spikes
generation process comes the statistical and stochastic analysis of the Interspike
Interval (SI) sequences of two consecutive neural impulses. One of the interesting
observations shows, that the analysis made on3heme series dos not mentions the
confirmed feature of ststical stationarity, randomness or independency. The second one
is that most of the published research works based on the assumption that the neural
spikes are generated by Poisson prqddsy, [15], [16] . If this assumption would be
true than the empirical probability density function of the IBvalues shows a straight
line. In the recent years a lot of published research works have questioned this
assumption[17], [18], [19], [20]. The author of this doctoral thesis shows in his master
thesis, that the Poisson process is not the appropriate ntodektribe the statistical
characteristic of thdSl time series. The results show that many different kind of

16
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probability density function can be fitted to the random, independent and uniiSbdal
time series. But, the most frequent type of functions he GeneralizedPareto,

GeneralizeeExtreme Value and Lejlormd [27].

17



3. The theor of Markov processes

3.1.  Stochastic processef21]

Suppose thaiX (t) is a random variable for every value wf T. The set of random

variables for different value dafi T is a random function in time. This random function
is a stochastic or random process. The value of stochastic process at everyiepoch

changes randomly. Let denote the probability space of possible values of stochastic

process adV,A ,P). At every epochti T the value of stochastic process is from the

setR. So,(R,B) is a phase space of stochastic process at

Definition 3-1.: Let (W, A ,P) be a probability space arfd a set of parametersThe
real valued ®chastic process ofWW,A ,P) with (R,B) phase space and index Jeis a
family of

X ={X(1), tIT}
measurable functions
X(t): (WA) - (RB).

For a givenX ={ X(t), t IT} stochastic process the value ¥f(t) for a givent is

a random variable. It has a one dimensional cumulative density function (cdf)

F(xt)= P(X(t) <x)
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The set oft with n given elementf,,t,,....t,) defines a set of random variables

(X(t), X(t,).... X(1,)) . The n-dimensional cdf of the sétX (t,), X (t,)...., X(1,)) is

Fo (%0 %o %t b 1) = PUX() <%, X(1) <, X ) R
For a different set of we have a family of different-dimensional cdf function. The
family of all n-dimensional cdf F (X, %,,...,%;t,t...,t,), n=12,.. is a fanily of

n-dimensional cdf of the stochastic process These cdf underlies the symmetry and

consistencygondition.

The n-dimensional cdf is symmetric if it is invariant of thermutation of alln

pairs of (x,t ), that is for all permutation dft,,t,....,t,) stay

Fn(xil,sz,...,>gn;i]tl,gz,... ,;n): E(%,%,, X1, 0, .0)

The n-dimensional cdf is consistent if
F (%0 X0 %t B Gt t) (XX % sttt )
The definition of stochastic process says, thdw; t) is a function of two variables,
wi Wandti T. This function has following properties:

1. for variable w and givent it is a random variable,
2.for given w and variablet it is a real valued deterministic function,
3.for given w and givent it is a real number,
4. for variable w and variablet it is a real valued random function.

Property 2 is a realization of the stochastic process. It is also callé@jgetory of
the stochastic process. If the experiment consists of recording the values at different time,
than the outcome will be one of the possible realization or trajectory of the stochastic

process. If the experiment repeated again, a different trajegtibbe obtained.
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Some examples of stochastic proess®2].
1. Stochastic processes with independent values.

The stochastic process is with independent values if for evdry] and

(t,t,...t,) T"is true

Fo (%0 % X5t b o) = B0 1) R %5 t) :CR? F( %: 1)

Stochastic processes with independent values are connected with the class of

processes with uncorrelated values and the class of processes with orthogonal values.

The stochastic process is with uncortethvalues if

cov(X(t).X(9)=E X(} -8 X ) (S 3 E ¥)) 0. =
g6

tll

n

The stochastic process is with orthogonal valueg gx( t) X (

2. Stochastic processes with independent increments.
The stochastic process is with independent increments if for any giveh set

t,¢t, ¢-- t¢the sequence of random variables

X (1), X(t)- X(%), X(t) -X(t)... X(§) X&)

are independent. To describe this process it is enough to know the functions
F(xt)=P(X(1) <1, andG(xts)=PA X() - X3 <k

This implies that theknowledge of cdf of the second order is fully describes the

characteristics of these processes.

3. Stochastic processes with finite moment of second order.

These are the complex valued processfy = a(t) + b(t), where a(t) and b(t)

are real valued stochastic processes and for évefy
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R 2 . .
EgX(t) ZEgX() () g=Ead() g€ BB) ¢
4. Stochastic processes with orthogonal increments.

These stochastic processes satisfy the condition
\ 5 )
EGX()- X(9 & o ts T

5. Stationary stochastic processes.

The stochastic process is strictly stationary if itsredlimensional cdf are invariant

of the time shift, i.e.

Fo(X % oxit+ht et H B % 65t )

If the strictly stationargtochastic process has mean and its moments of second order

are finites, than i.e.

EgX(t) gE x§t+) @ ocons

k(t)=BIX() -m (3 me EEKt)s -J(-K Qs )m

=EgX(t-9 n)(X0) Mm-2 BEp -

The stochastic process is weekly stationary (véielese stationary) if its all moments
of up to second ordere finites, its mean is constant and its correlation function is a

function of the difference of its arguments.
6. Gaussian stochastic processes.
The Gaussian stochastic process has a family-dfmensional Gaussian cdf. These

stochastic processes have a characteristic function

ee i /jX('fj) ﬂ\ i B m % A, ke th
- j=1 _e' E3 ik E
ftl,tz ,,,,, t (/1’ é,..., n)_E e | |‘| i J

A

é u

Where
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mj:ng(‘i) g i« :Eg X(F) “P)( X&) ®)

It follows, that the functionsn(t) = EgX(f) and K(t,s) are sufficient to describe
the Gaussian stoaltic process.
7. Markov processes.
The stochastic process is a Markov process if for every nondecreasing set

t,t,,....,t I T ifit satisfies

PIX(6)<%IX(1) <t X(1:) %) KD ¥ X L) x¥
This equation states that the futwKe(tn) of the Markov process depends only on the
knowledge of the present and independent of the knowledge of the past.

In the mathematical study of stochastic processes the concept of continuity is one of
the most important properties.

Definition 3-2: Stochasticprocess{x(t), ti T} is stochastically continues at

the pointt, if

P(IX(1)- X(t) 26) 0, t -

This definition describes the local behavior of the stochastic process at the, pdtint
could be extended on the inter\[al b] if the above definition applies for any point in the

given interval. Another form of definition of stochastic continuity states

Definition 3-3: Stochastic procesgX (t), ti T} is almost sourly continues in

the interval[a, b] E T if its almost all trajectory are continues in that interval.

The stochastic continuity of the stochastic process is its local property, while the

almost sourly continuity is its globaharacteristic.
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3.2. Markov processes

Let (W,A,P) be the probability space of the stochastic pro§esgt), ti T} with
phase spac(eR,B). For si TdenoteF, the s -field generated by the family of random

variablesX (u), u¢ suiT.

Denote F,=s{X(u); u ¢s us I} the s-field generated by the family of
random variableX (u), u¢ s usi T DenoteF=s{X(v); v2s vs I} the
s -field generated by the family of random variabtelsr), v2 s v si 1. Denote
P(Al X(9) the conditional probability of the everA corditioned of the s -field

generated by the random varial¢s) .

Definition 34: The stochastic proces{sx(t), ti T} has a Markov property if it

satisfies the equation
P(X ()i BIF,) =P( X() 1B X 3)

In the study of Markov processes the parametas interpreted as time. In this

context, X (t) describes the time evolution of some stochastic system. The random
variable X (s) is the present state of the system.ulk s, than the family ofX(u)

represents the evolution of the system in the past>ifs, than the family ofX(v)
representshie future of the system. In this context, the Markov property says that the
evolution in the future depends only on the present state and independent of the past.
The conditional probabilityP(X (t)i B] X(9) =f('s X . t B is a measurable
function of xi [J and it is a function of the parametesst, B. This function is the
transition probability of the Markov process. If the system in epssit is in state

X (s) than thetransition probability gives a probability that it will be in one of the state

from setB at epocht. The transition probability has following properties:
23
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1. as function ofB it is aprobability of (R, B)

P(s X(9.1820, Ks X} tR=
2. as afunction ofx it is B -measurable,
3. P(X(9)I BIX() =X % x

4. ChapmarKolmogorov equation
P(X( BI X(9) jjp( Xy e ) 30X o K

Suppose that Markov process has finite or denumerable set of states. To define the

measure in(R,B) it is enough to give finite or denumerable number of transition
probabilities P( X (t)=x | X(§ =x) =( s). The ChapmaiKolmogorov equatio

become

pu(st)=a n,(st) p( #), s< t=

Using matrix notationP(s,t)=gp, (s?) g s <!, the matrix form of Chapman

Kolmogorov equation is
P(s,t)=P(st)P( tt), s< t4
The transition matri>P(s, t) is a stochastic matrix with tHellowing properties:
- P(s,t)2 0,
- 53;1 P (st)=1,
- P(t,t) =1

To describe then-dimensional cdf it is enough to know the initial probability
P(X(t)I B), B 1B and he transition probabilitieB( X (t)i B| X(§ =3. This
implies that the Markov process is fully characterized by itsdimzensional cdf. If the
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transition probabilityP( X (t){ B| X('§ = is only a function of the difference- sfor

any x andB, than the Markov process satisfy the homogeny condition. Than the

ChapmarKolmogorov equation describes the evolution of the process as

P(X(t)i B) ::]P( X() 18 X0) 3 # X0 dk

In case of Makov process with finite states, the matrix equation has a form

P(t+s) =P(t) Rds)

3.3. Markov chain[23]

Let the parametet takes integer values and denote it with_et the phase space be a
finite set of countable elements called states. We recall that, finite stochastic process is an
independent process if the knowledge of any sequence of observations nyphto
observation does not affedtet prediction of the next observation. In case of Markov
processes, this condition is weakened to allow the immediate past to influence on the

prediction of the next observation. The Markov property has a form
P(X(n):§|x(n-1) s A n2 ks;..) f’:){()n 4% n i):

Definition 35: Denote with p, (n) the conditional probabilities which corresponds to

Markov property. Then-th step transition probabilities of the Markov process are

pi(M=P(X() =sI X nY 5

Definition 3-6: A finite Markov chain is a finite Markov process such that the

transition probabilities do not depend oni.e. p; (n) = R .
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Definition 3-7: The transition matrix of the Markov chain is a matix which

elements arg,. The vector of initial probabilityp, is the vector which contains the

probabilities of the set of states at initial or starting time.

The initial probabilities and the transition tma are enough to determine the Markov
chain process, since they are sufficient to give a probability measure of any sequence of

the process. Given any probability vectpy and any probability matrixP, there is a

unique Markov chain with initial probability vectqs, and transition matrixP .

Let s; denote the state of the process at timeDenote F the sequence of states

after n and P the sequence of the states upro The Markov property could be

expressed in a following form

o(e mpi o) PIFAPAS) HFIPA) P &
PRSI0 5

SRR 2(e15) e 5

This formsays that for the known present state the future and past are independent of

each anther.

For finite Markov process, the probability that the process at tinvéll be in state

s, is equal to the sum of all possible state sequences ending insstate for a given

transition probabilitiesp; (n)
P(X(N=5) A AXnY § pOp

Let denote p(”) the vector of the proltdities of the different states at time. For a
given initial probability vectorp, and transition matrixP , the matrix form of the above

statement is
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P = B(r) B9 P(61) A() OF % B0 2B nY HG
=p, B(1) PE)-P(n D AnC) K O

In case of Markov chain the transition mat®(n) does not depend on. The

above expression takes the form(”): p, B'. It shows, that the study of the

probabilities of the differenstate of the Markov chain is reduced to the study of the

power of the transition matri® .
State Classification

The classification of the state of the Markov chain could be made by inspecting
whether it is possible to go fromgaven state to another given state. In this context states
can be divided into equivalence classes. Two states are elements of the same class if they
communicate, i.e. it is possible to go from either state to another one in the class. The
equivalence claes define equivalence relations. The basic property of the equivalence
relation is that it partitions the set of states. It is reflexive, symmetric and transitive. The
week ordering relation holds only the reflexive and transitive properties. By the week
ordering relation it is possible to order the states. If the equivalence relation is the identity

relation, than the week ordering relation is a partial ordering.

Definition 3-8: A subset of states of the whole set of states is a minimal element of
the patial ordering if its members cannot contact members of other classes. A subset of
states of the whole set of states is a maximal element of the partial ordering if its

members cannot be contacted by embers of any other class.

Definition 3-9: The minimalelements of the partial ordering of equivalence classes
are called ergodic sets. Its elements are called ergodic states. The remaining elements are

called transient states and they make a transient sets.

For every finite Markov chain there must be at least ergodic set, however there
need be no transient set. If the finite Markov chain has no transient set, than its states
make one ergodic set or there are several ergodic sets which do not communicate with
others. If the ergodic set contains one stdtes, called absorbing state. If the stageis

absorbing state than its transition probabilities are
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The equivalence classes can be divided into cyclic classes. If there is only one
cyclic class itis called regular. Otherwise it is called cyclic. In case of regular classes
after sufficient time the process can be in any state of the class independently of its
starting state in class. It also means that the sufficiently high power of its transition
matrix must be positive. If the class is cyclic, than no power of the transition matrix can

be positive.
Based on the above state classification it is possible to classify Markov chain.
I. Chains without transient sets.

If this chain has more than one ergodet, than there is no connection between them,
hence there is two or more unrelated Markov chains lumped together. They could be

studied separately.

a. If the ergodic set is regular it is called regular Markov chain. No matter where

the process startafter sufficient time passed it could be in any state.
b. If the ergodic set is cyclic it is called cyclic Markov chain. This tgpehain

has periodd . For a given starting state it move trough the cyclic sets in a definite

order, and returning to the set of he starting state aftsteps.
[I. Chain with transient sets.

In this case if the process starts from the transient set it moves toward the ergodic
sets. After the process enters in the ergodicits€annot escape from it. So, the

classification of the chains will be made by their ergodic sets.
a. If all ergodic sets are unit sets, the Markov chain is called absorbing chain.
b. All ergodic sets are regular, but not all are absorbing sets.
c. All ergodic sés are cyclic.

d. There are cyclic and regular sets simultaneously.
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Let us focus our attention on ergodic chain. In case of ergodic chain, it is possible to
go from any every state to every other state. This is true when the ergodic chain has a
single egodic class i.ed=1. If d>1, this kind of transition is possible for special
number of steps. The transition matrix has zero elements and their position change

cyclically in the matrix with the power of theansition matrix. HenceP" does not

converge.

Theorem 3L: For any ergodic chain the sequence of powrss Eulersummable to

limiting matrix A, and this limiting matrix is ofhe form A=x @, with @ a positive

probability vector.

Theorem &: If P is an ergodic transition matrix,

a) the sequenc®" is Cesaresummable toA ,

b) the seried +§ (Pi -A) is Ceasarsummable taZ .

i=1

Theorenm3-3: The transition matriXP is regular if and only if for som& the matrix

P" is positive i.e. it has nonzero elements.

TheorenB-4: If P is a regular matrix then
a) the limit limP" = A exist,
b) each row of the matriA is the some probability vecta ={a,, a,,...,a},
that is A =x & where.x is a unit column vector,

c) the elements of is a positive vector.
Theorem35: If P is a regular matrix and and a are given as iTheorenB-4, then

a) for a probability vectop the productimp®" =,

b) the vectora is a unique probability vectsuch thata & =,

c) Al P AOA.
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The matrix A and the vectora will be called as the limiting matrix and limiting
probability vector for the Markov chain determined B. It is also called stationary
vector or stationary matrix of the Markov chain. The last theorem says that for the regular
Markov chain the long range predictions are independent of the initial vector. The
fundamental matrixZ of the regular Markov chain plays basic quantity in determining

the properties of the chain.

Theorem 36: Let P be the transition matrix ané stationary matrix for a regular

Markov chain. Then the matrix

Z=1 4 P" A) (=P -A)3

k=1

exists and it is referred as the fundamental matrix of the regular Markov chain. It has

the following properties

a) P&x Z P,
b) Z& =,
c) al@ =,

dI1-Z A RPZ.

Definition 3-10: For a regular Markov chain, the first passage timpes a function
whose value is the number of steps before entering stater the first time after the
initial position.

Definition 3-11: The mean first passage matrix, denotedMby is the matrix with
entriesm; = Egn .

Let us collect all the properties of the mathikin the following heorem.

Theorem 37: Properties of the mean first passage maitixare

a) it satisfy the equatiom =P @D’I I\/I-dg) E,
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b) for the stationary distributioa of the matrixP, then m, :a,i'

c) itisgivenbyM =(I Z EZ D,
d am =z a(;')D .
Theorem 3: Let us define matribM =M D . Than, for any regular Markov chain

a) the matrixM has an inverse,
b) a=(c 4) (@ ))Tt,
c) P=1 4D E) MO,
Theorem 3: The variance of the mean first passage timevdasgn, gW M,
whereW =M (22,0 G ) -2 g™ & (& ),].

Reverse Markov chain

Recall, that if the forward process is a Markov chdire reverse process will be a

Markov chain if P(X(n) = 51) does not dependent am regardless of the starting state.
It is an obvious property if the process starts from the equilibrium.

Definition 3-12. Let P be the transition matrix for an ergodic Markov chain. ket

be the fixed probability vector foP. Then the reverse Markov chain fBris a Markov

chain with transition matrix given bp=D B D€,
Definition 3-13: A Markov chain is reversible iP = P.

Theorem 3L0: A Markov chain is reversible if and only B *@® is a symmetric

matrix.

TheorenB-11: The fixed probability vector foP and P is the same.
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Theorem 3-122 The fundamental matrix for the reverse Markov chain is
Z=D I D¢

Theorem a3 M-M £ D D)

Thegen8-14 W- W 4Z DO(Z-D) P22 b @I ) Gé D Of ® )b)
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4. Data description and the statistical
properties

This chapterontains descriptions of the datasets which were used in the data analysis
procedure. The chapter describes the experimental condition usedprotiess bthe
signal recording.All experimental protocols, such asre, surgery, and trang of
animals, were donaccording to the Publidealth Service policy on the use of laboratory
animals andcomplied with guidelines of the European Ethics Committee o dwsl

Care of Animals.

The basic empirical statistical properties are given for both dataset. These includes
the mean, median, mode, geometrical mean, harmonical mean, the kurtosis and skewness
coefficients. The differentoefficient of variation (CVandlocal coefficient of variation

(LV) are also given.

The variability of the neural firing patterns in the cerebral covias analyzedby
exemining statistical properties of theerspike interval [SI) between two consecutive
acton potencial. In order to describe these random variabilities of the values t8Ithe
sequences, thprobabilitie densitie function KDF ) given in Tablel were used. The
PDF s which were selected are the most common functions in the scientific and

mathematical literature. In the fitting procedure robust statistical methods were used.

To measure the time dependency of the adjat&htwalues, the Poincare plotgere

used. Combining it with the theory of copula function, the results show that the adjacent
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ISI samples are highly dependent and these dependencies can not be desdAbé&d by

function.

Table 1 The list of probabilitie densitie fuction

CODE | PDF TYPE DATA TYPE
1 Log-Normal (LN) ISI

2 Exponential (E) ISI

3 Weibull (W) ISI

4 Chi-square (C2) ISI

5 Gamma (G) ISI

6 Noncentral Chisquare (NcC2) ISI

7 Rayleigh (R) ISI

8 Uniform (V) In ISI
9 Fisher (F) ISI
10 Noncentral Fisher (NcF) ISI
11 Noncentral Student (NcT) In ISI
12 Student (T) In ISI
13 Extreme Value (EV) In ISI
14 Generalized Extreme Value (GEY\ In ISI
15 Generalized Pareto (GP) ISI
16 Generalized Beta In 1SI

4.1. IM dataset, [24], [25]

4.1.1. Recording fromAQCbrain area

EXPERIMENTAL PROCEDURES

Housing, surgical, electrophysiological, and histological procedurescaered out

according to the European ComntynCouncil Directive (1986)(Ministe ‘re de

| Agriculture et de | a Fore Et,

Commi ssi on

Direction De”partementale des Services Ve'te ‘rinajtg®n, France). Each animal was

seated in a primate chair withinnad s

roe a tartgent touckcreen (Microtouch

System) coupled to a TV monitor. Aarm-projection window was opened in the front

panel of the chair, allowing
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the monkey to touch the screen with one hand. A computer recordpdsitien and
accuracy of eah touch. It also controlled the presentation tha monitor of visual
stimuli (color shapes), which served as light targgZ©ORTEX software, NIMH
Laboratory of Neuropsychology, Bethesda, MBye movements were monitored using
an infrared system (Iscdnc., USA). Four target items (disks of 5 mm in diameter) were
used: upper leftUL), upper right (UR), laver right (LR), lower left (LL).A centralwhite
disk served as fixation point (FP). The lever was disposed just iieéorP

Task

Two male rhesus nmkeys were trained ithe problem solving task (PSYlonkeys
had to find by trial and error which target, presenited set of four, was rewarded. Each
trial started by the onset of a startingtarget med &6 61 ever . 66 The ani ma
by towching the lever and holdingis touch. The FP appeared, and the animal had to
fixate it with his gaze. Adelay period (2 s) followed, and ended by the simultaneous
onset of the foutargets. At the FP offset, the animal made a saccade toward a target,
fixatedit (0.5 s), and then touched it following the GO signal. All targets switcheat off
the touch,and a 0.6 s delay followed before the feedback was giverewiard (fruit
juice) was delivered for choosing the correct target (positive feedback; wintehaad).
If a choice in one trial was incorrect (no reward, negative feedback; black arrowhead), the
monkey could sele@nother target irthe following trial and so on until the solution was
discovered (search periodjach touch was followed by an intahof 2 s.The animal
had to search for the correct target by trial and error. After discovery, the animal was
allowed to repeat the response. In 90% of cases,thttethird repetition, a red flashing
signal (the four targets in red) indicated 8tartof a new problem, i.e., a search for a
new correct target. In 10% of cast repetition lasted for 7 or 11 trials. A problem was
composed of two periode 60 6searché6 period that include
first correcttouchand ai 6 6obpepét peri od wherein the ani:

the correctouch.
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Recordings

Monkeys were implanted with a heasktraining device, and an atigsided
craniotomy was done to expose an aperture over the prefrontal cortex. Neuronal activity
was recorded using epoxgoated tungsten electrodes 4IMOhm at 1 kHz; FHC Inc,
USA). One to fourmicroelectrodes werglaced in stainlessteel guide tubes and
independently advanced into tlwertex through a set of micromotors (Alp@enega
Engineering, Isael). Neuronal activity was sampled at 13 kHz resolution and LFP at 900
Hz. Recordingswere referenced on the guide tubes in contact with the dura and
containing themicroelectrodes. Recording sitesvered an area extendinger about 6
mm (anterior to psterior), in the dorsal bank of the antericingulate sulcus, at
stereotaxic anterposterior levels superior to A+30, aatl depths superior to 4.5 mm
from cortical surface. Locations were confirmigdanatomical MRI and histology.

Unit Activity

Single ativity was identified using online spike sorting (MSD, AlphaOmedde
activity of single neurons was compared with respect to different esadt®utcomes
resulting from different conditions by using averaged peristimulus histograms (PSTH)
and triatby-trial spike counts (NeuroExplorer, Né&echnology, USA, and MatL&The
MathWorks Incd homemade scripts)PSTHs had a binning of 0.01 s and were boxcar
averaged. Neural activitwas considered to be significantly different between conditions
if it exceede 5 standarddeviations of the mean difference between trial types taken
during the window-600£200 ms preceding event alignment time and remaaiexve

this threshold for more thaix 0.01 s bins.

4.1.2. Recording frondIPFrain area

Behavioral task

Data fom three monkeys (Macaca mulatta) are reported here.mavikeys were
trained in théwo following tasks
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Delayed response task.

The monkey sat in a primate chair in front ofeatical touch screen (Efdouch; 19
inches, 48 cm) positioned at amdachdistance. Eye movements were monitored and
digitized at 100 Haising an Iscan (Burlington, MA) infrared system.

The animal touched a central target (lever) to trigger the appeararecdixattion
point (FP). An FP fixation of 700 ms triggered the appsaeaf a 500 ms light cue at
one of the four possible locations (targets wpositioned at the corners of a virtual
square 10 cm from the FRAfter an ensuing delay period of 25 s (during which the
monkey was required to maintain fixation on the FPI), faur possible targetsvere
illuminated and, 100 ms later, the FP was extinguished. The maém&eyhad to make a
saccade toward the remembered target. Afterntbekey fixated on the remembered
target for 390 ms, all the targdtgned white (go signaljndicating that the monkey was
required totouch the target. A juice reward was delivered 600 ms after a ctorastt.

The trial aborted in case of an incorrect or a premature touaehhr@ak in eye fixation.

For the first sessions of the experimeates were delivered by blocks three
consecutive trials. Thus, in the second and third trials of bk the animals could
predict the location of the next cue. This desigs then abandoned. It concerns five

cells included in the pool of data.
Probkem-solving task.

Task events were similar to the DR task, exdbpt the correct target location was
not specified by a cue. Monkeys had fiod it via trial and error. A problem was
composed of two periodsifas e ar ch peri odo t tri@suptothefisuded al |
correctt ouc h, and a firepetition per irepgatdthewher ei n

correct touch three times.

In the case of an incorrect touch, all targets disappeared, and nmexhérial the
animal was required to continuéshsearch for the corretarget. A juice reward was
delivered 600 ms after a correct touch. After thied repetition, a red flashing signal

(circle of 8 cm in diameter centerexh the FP position) indicated the start of a new
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problem (i.e., a search farnew correct target). Two consecutive problems never had the

samesolution

A third monkey was trained in the PS task with a variation concereingrd size.
For each problem, the size of the reward was rand@elgcted between two sizes
(small, 0.25 i large, 0.5 ml). At the beginningf each trial, the color of the lever

indicated whether the reward would $mall (red lever) or large (green lever).
Electrophysiological recordings

Monkeys were implanted with a heesbktraining device, and a magnetgsonance
imagingguided craniotomy was done to expose a circafaarture over the prefrontal
cortex. Neuronal activity was recorded using varngsigted tungsten electrodesi (%
Mohm at 1 kHz). One or two electrodes were placedtainlesssteel guidetubes and
independently advanced into the cortéxough a set of micromotors (Alpt@mega,
Nazareth, Israel). Neuronal activity was sampled witmS8@esolution and recorded
waveformswere sorted into separate units using a temytatching algorithm(CED,
Cambridge, UK). All animal training, surgeries, and experimgnitatedures were done
in accordance with National Institutes of Headhidelines, and approved by the Yale
Animal Care and Use Committee. The third animal was recorded using an AlphalLab

system(Alpha-Omega)

4.1.3. Statistical properties of thdM dataset

From data obtaine®98 ISI sequences is extracted for further analysis. Since the
exact probability density function of the individual data hesbeen known, most of the
tests used in the analysis are distribution free tests. At first the randomness of the data has
been tested using Wallolfowitz nonparametric test. The result shows that

53.58°/c( 374/69}2 of the data has random andd@&pendent, identically distributed

characteristics. Using the dip test the percentage of the unimodal sequences

is70.919 495/69p. The percentage of the data that are random and unimodal

i534.24% 239/69B, Table2.
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Table 2 The percentage of data with different kind of statistical properties

Data type
Number of random irr?ggog{dent
Dataset ISI random, . ) ' 'ep '
: unimodal independent, | unimodal,
sequences| independent .
unimodal convergent ML
estimation
IM 698 374 (53.58%)| 495 (70.91%) | 252 (36.1%) | 239 (34.24%)
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1 Log-normal

2 Exponential

3 Weibull

4 Chisquare

5 Gamma
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7 Rayleigh

8 Uniform
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9 Fisher

10 Noncentral Fisher

11 Noncentral Student

12 Student

13 Extreme Value

14 Generalized Extreme Value
15 Generalized Pareto

16 Generalized Beta

p -Values

pdf codes

Figure 14 The results of the fitting procedure of the IM dataset. The number of
data sequences with convergent fitting results is 239. Upper panel: a relative
number of particular PDF types. Lower panel: box plot of the coresponding p
values. PDF code numbers are listed in the right (from Table 1\Note that a small
number of neural units with Weibull and Chi-squared distribution (code 3 and 4)
cause a narrow box plot. Code numbers 6, 10, 12 and 13 dose not appeared as a
winner PDF in the estimation process.
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Figure 15 The results of the fitting procedure of the IM dataset within thedifferent
brain areas. Upper panel: the relative number of PDFs in the ACC, dIPFC and PM
brain area. Lower panel:the corresponding pvalues

4.2. IP dataset, [26]

4.2.1. recording

Behavioral task

The core of the present study concerns two monkeys (&idl Mk2) trained to
perform a visually guided saccadtask during which the visual target coulmk
accompaniedy an auditory stimulus (V/VA active task). A trial was initiated by the
appearance of a fixation point (FP) locatethat center of the video screen and of a size
of 0.2 degreeThe monkey had to direct its gaze and to maintain fixadidhis central
point. The duration of presentation of thB was randomized between trials and lasted
between1500 to 1800 msSimultaneously, with the extinction d¢fie FP, a peripheral
visual target was flashed for 50 niie monkey was required to peroa saccade in the

direction to the locus of the visual target within 250 mst®fappearance. Responses
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were considered as correghen the saccades were performed within a window»#4
degrees centered on the visual target, and in these &dsesdops of fruit juice were
delivered to the monkeys asreward. In half of the trials, presented randomly, a 25 ms
sound (a white noise) was delivered from a spebldaated at the same eccentricity on
the azimuth as the visual stimulus. In such \vaudibry trials (VA), the visuabnd the
auditory stimuli were presented at the exastyne time. In both conditions (V and VA)

the monkeywas required to perform a saccade directed toward the visual target and
consequently, the auditory stimulus hadb@havoral meaning for the animal. Note that

we did nottrain the monkeys to perform a saccade toward the auditory stimulus alone.

The first monkey engaged in the present study (Mk1)fisststrained to perform two
control tasks before the V/VActive task. Ina first stage, the monkey was trained to
perform a simple passive fixatidask (V/VA passive task). Holving the presentation of
the FP (of variable duratioinom 1500 to 1800 ms), a visual or visaoditory stimulus
was presented for 500 ms togetherhwiihe FP. To getewarded, the monkey had to

maintain its fixation untithe FP was extinguished.

Further, Mk1 was trained in a visual control taskaiMy control task), during which
the color of the FP informethe animal whether he had to maintain at@rfixation
(blue FP) or to make a saccade toward a visual peripstarallus (Red FP). In this case
the visual stimulus wasever accompanied by an auditory stimulus. The tinohg
stimulus presentation was identical to that describethe active tak (50 ms).

The monkey Mkl was engaged successively in eat¢hese different protocols for
several months, a period during which electrophysiological recordings were periarmed
the primary visual cortex (see below). Mk2 was traifrech the beginningo do the VA
active task.

4.2.2. Statistical properties of thdP datase

From data obtainedl234 ISI sequences is extracted for further analysis. The

distributionfree results show thaB86.229% 1064 /123 of the data has random and

independent, identically distributed characteristics. The percentage of the unimodal
42



Data description and the statistical properties

sequences i£3.53°/<( 784/123)4. The percentage of the data that are random and

unimodal i16.61% 205/123}, Table 3

Table 3 The percentage of data with different kind of statistical properties

Data type
Number of random irr?ggogrl{dent
Dataset ISI random, . ) ' 'ep '
: unimodal independent, | unimodal,
sequences| independent .
unimodal convergent ML
estimation
P 1234 1064 784 (63.53%) | 688 (55.75%) | 205 (16.61%)
(86.22%) ' ' '
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Figure 16 The descriptive statistics of thelP dataset; 2mean, 2median, 3mode,
4-geometric mean, Bharmonic mean, 6trimmed mean (10%), #square root
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Figure 19 The results of the fitting procedure of the IP dataset consisting of 209 data
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box plot of the corresponding pvalues.
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5. TheMarkov model

5.1. The three state Markowxhain model

Based on the observational study of the Interspike Inten&ill) (it is possible to
generalize their characteristic behavior. In some time intervals theiSlavalues which
successively increing. In these intervals the differences of the succedSVevalues
have positive sign. In some intervals there E8k values which successively decreasing.
In these intervals the differences of the susesIS| values have negative sign. There
are some intervals where the successively apped8hgsalues have difference which

change its sign.
Let us define the following states of the neural cell.

Definition 51: Let us take three successively appeaii@p valuesSI _,, ISl , ISI, ,.

n?

The neural cell has following states:

a) decreasig statg(D) if >8I, ASI, 1’ -3
b) alternating statéx) if
<S8l , dASlL Bl, > or --- ISE, ISI< IS|L > ---,
a) c) increasing statel() if --<ISl,_, 4SI, &l , --=

Definition 52: The sequence of the states is determined by the sequence of the

observed ISI values. The first state is determined (I8, ISl,, ISL,), the second
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’ The Markov model

by(1Sl,, ISl,, 1S1,) , the third by ISl,, IS, ISL;), and so on. In every step the new state is

determined by the newly observégl values and its two presiding.

Notice that from the definition of the states, there is no possibility to go fromBtate
to state| directly or visa versa. The estimated sequence of the statesdbéave
patterns like... DI ... or...ID.... Because of the finite representation of tB¢values, it

is possible to observe two identical valuéSl, _, = ISI called ties. In thiscase the

weakened definition of the states could be

Definition 53: Let us take three successively appeari@p valuedSl, ,, IS, ISI, ,.

n?

The neural cell has following states:

a) decreasig statg(D) if --->1Sl , SISl , -3
b) alternating staiex) if

--<ISl , Asl, sl --> or -+ ISk, ISI< ISL > ---,
c) increasing statel() if ---<ISI_, dSI &I , --<

This definition allows patterns of states likeDI ... or...ID....

If we take the stronger definition than the transition matrix has a form

ep, P, O o
_e u
P=gPy P» Psy 0CR I

AN

€0 p, P H

Definition 54: The percentagelSl values of the specific state patterare the

normalizedISI values with respect tinetime duration of thastate pattern
Definition 55: The state of alternation can be devided into two further states:

a) state A with propertie---I1SI_, <ISI, S| ,---,

b) statea with propertie---1Sl_, > 1SI, <Sl, ,---.
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5.2.  The empirical results

Basedon the definitions of the Paragraphb.1, this chaptercontainsthe empirical
statistical results of the set of state sequenciesFirst, the reslts of thelM data set
presented and than the results of HRedata setFor both data sets the results of the

analysis comprise type subset of results and they are given in the same order.

The first set of results contains descriptive statistics ofstae sequences such as
time duration of thencreasing , decreasingD states and the alternation state the
relative number of appearancafsthese states, two way tables ¢sttindependence with
minimum discrimination information statistic, the distribution of the different length of

| , D and x.states.

The second set of results contains the residilgatistical comparison of thaefined
states by comparingS| valueswhich defined them. The distribution fré®o samples
Kolmogorov+Smirnov teswvas used KS2 test.The hypothesis is that the two samées
generated by identical probability functiorhe test wasised to compare percentatf@
values and rawSl values tooThe results are given in colored table format. The colored
parts of the tables prest the weigthed average of the number of those state sequences
which KS2 test accepted the hypothesis of indentical probability function. The weigth

was the observeg@V value of the KS2 test results. Formaly

_ ak‘ L PV , SL accepted
number of state sequences “ _:'0, rejected
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5.2.1. The empirical results of théM data set

the time duration of the different pattern the time duration of the different pattern
length of the | state length of the D state
250 150
200
i) i)
5 150 5 100
IS IS
= 100 S L
S I o 50 P
£ 50 3 £ : E +
11 12 13 14 15 16 17 D1 D2 D3 D4 D5 D6 D7
the time duration of the different pattern length of
the alternation state
-
s
. 200
o
S -
IS
S 100 C
@ + I . +
E E 3 + -
0 L4 +

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23

Figure 21 Boxplot diagrams of time durations of different state patterns of the
whole data set; | -increasing state; D -decreasing state;x -aternation state
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Figure 24 Boxplot diagrams oftime durationsin different brain area; x-alternation
state
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